UAB Leads Neuroscience Research Team in Alabama, Southeast

Robert Rich, MD

UAB will be the home of the Alabama Neuroscience Blueprint Core facility, a research program funded by the National Institutes of Health (NIH) that will link investigators from universities and institutions across the state and region. A 5-year, $8.6 million grant will provide six shared core facilities for scientists working in neuroscience.

NIH created the program in 2004 to develop new tools, resources and training opportunities to accelerate the pace of discovery in neuroscience research. In 2006, numerous institutions throughout the United States submitted applications for funding, and the UAB project is one of only four to receive NIH funding.

"The highly competitive application process for this program involved many of the leading research institutions in the country," said Robert Rich, MD, UAB senior vice president and dean of the UAB School of Medicine. "The creation of the Alabama Neuroscience Blueprint Core facility provides further testimony to the tremendous support the people and government of Alabama give to biomedical research, including the excellent scientific framework that already is in place at universities across the state. This facility promises to vault Alabama to the top tier in neuroscience research, nationally."

"This grant award lays the essential groundwork for a world-class neuroscience research environment in Alabama," Rich said. "It will create the kind of infrastructure needed to support, sustain and build neuroscience research programs across the state and region."

In addition to a large neuroscience community at UAB, the core facility will support the research activities of NIH blueprint-funded scientists from Auburn University, the University of Alabama, the University of South Alabama, Southern Research Institute, Tulane University, and other participating institutions in the Southeast.

"These NIH-supported core facilities will provide investigators new research tools to enhance our understanding of the nervous system. This, in turn, should help speed the development of new drugs and therapies for a wide range of neurologic and psychiatric conditions and diseases," said facility director Kevin Roth, MD, PhD, UAB professor of pathology and director of the Division of Neuropathology. "This is a truly collaborative effort, crossing institutional lines and synergizing activities across many disciplines."

The six cores are a molecular engineering core, a cellular and molecular neuropathology core, a neuroimaging core, an in vivo physiology and phenotyping core, a synaptic physiology core and an administrative core. They are designed to provide new research capabilities and will complement existing programs and core facilities to provide investigators throughout the Southeast with an unprecedented ability to develop and study unique animal models of nervous system function and dysfunction.

The cores will be able to provide limited services and opportunities for investigators immediately and will be fully operational in about 6 months, following the purchase and installation of additional equipment.

235 UAB Physicians Included in Latest "Best Doctors in America"

The latest list of "Best Doctors in America" includes 235 UAB physicians, comprising more than two-thirds of all specialists from the Birmingham metropolitan area now in the Best Doctors database.

Best Doctors is an independent, knowledge-based medical referral service located in Aiken, South Carolina. Its surveys ask peer physicians, "If you or a loved one needed a doctor in your specialty, to whom would you refer them?" Only about 3 to 5 percent of all specialists worldwide make the list, which currently names 33,000 in the U.S. – including 345 physicians in the Birmingham area.

Nominations for the list are anonymous, and doctors' evaluations are confidential, according to the company. The system of review, based on methodology invented in 1992, includes a method of catching and correcting bias, for or against particular physicians or groups of physicians. Listings cannot be purchased.

Consumers can learn more about Best Doctors at www.bestdoctors.com.
Velinda Block Is New Chief Nursing Officer for UAB Hospital

Velinda J. Block joined UAB Hospital as chief nursing officer March 5.

Block, who has been vice president of patient-care services since 1997 at St. Louis Children’s Hospital, an affiliate of Washington University in St. Louis, began her career at the bedside as a staff nurse in the neonatal intensive-care unit at Athens Regional Medical Center. She has risen through the ranks of clinical and hospital administration at a number of institutions, including Vanderbilt University Medical Center in Nashville and T.C.T. Children’s Hospital at Erlanger Medical Center in Chattanooga, Tenn.

Block has overseen numerous clinical departments, including nursing services, pharmacy, the emergency unit, transplant programs, and patient-care information systems. Block also provided leadership leading to St. Louis Children’s Hospital achievement of Magnet Designation from the American Nurses Credentialing Center (ANCC) in 2005.

“Velinda Block, during the past 23 years, has been active in clinical, research and administrative capacities, and she is highly regarded by her fellow practitioners and administrators,” Michael Waldrum, MD, CEO of UAB Hospital said. “We’re very pleased she has accepted this position.”

Block earned her bachelor’s degree from the Medical College of Georgia School of Nursing and her master’s from the Vanderbilt School of Nursing. She also is certified in nursing administration by ANCC.

She is a member of Sigma Theta Tau nursing honor society, the American Organization of Nurse Executives, American Nurses Association, and National Association of Children’s Hospitals and Related Institutions (NACHRI).

Her other professional contributions include publications in a number of peer-reviewed journals, including the Journal of Obstetric, Gynecologic and Neonatal Nursing and Journal of Nursing Administration.

The UAB School of Nursing has been ranked No. 1 among the nation’s schools of nursing for the scholarly productivity of its faculty.

The ranking was done by Academic Analytics, which annually rates faculty scholarly output in more than 7,000 doctoral programs of all kinds in the United States.

In addition to the nursing ranking, published in the Jan. 12 issue of The Chronicle of Higher Education, the UAB School of Public Health ranked No. 7 among the nation’s schools of public health in faculty scholarly activity; and the Department of Pharmacology and Toxicology in the UAB School of Medicine ranked No. 5.

The 2005 Faculty Scholarly Productivity Index ranked 7,294 individual doctoral programs in 104 disciplines at 354 institutions. For a program to have been included in the 2005 index, it must have 10 or more faculty members, or, if it has fewer, it must have one half the median number of faculty members for a program in that discipline.

The scholarly productivity of each named faculty member was judged on as many as three factors, depending on the most important variables in the given discipline: publications, which can include the number of books and journal articles published as well as citations of journal articles; federal-grant dollars awarded; and honors and awards.

The UAB School of Nursing’s 11 doctoral faculty members all produced peer-reviewed journal publications in 2005, with an average of 3.27 publications per person. Additionally, 64 percent of the faculty had journal publications cited by another work, with 8.09 citations per faculty member. The school also boasted 27% of faculty with new grant awards in 2005, with the average amount of each grant being $465,179. The UAB School of Nursing was ahead of schools including Emory University (No. 2), University of Pennsylvania (No. 3) and New York University (No. 4).

The toxicology doctoral program in the Department of Pharmacology and Toxicology at the UAB School of Medicine, with 15 faculty members, had 93% of its faculty members produce peer-reviewed journal publications in 2005, with 9.33 publications per person. Additionally, 93% of the faculty had journal publications cited by another work, with 70.73 citations per faculty member. The program also had 53% of faculty with new grant awards in 2005 averaging $464,712. UAB’s toxicology doctoral program topped programs at University of Washington (No. 6), University of Southern California (No. 7) and UCLA (No. 8).
UAB researchers have developed a method to increase bone density in mice, a development that might have future benefit for humans in the treatment of osteoporosis and bone fracture.

The research, published in the Jan. 29 issue of Proceedings of the National Academy of Sciences, involves manipulation of the Pten gene, which contributes to the process by which cells die, known as apoptosis.

"Bone density can increase either because more bone cells divide or fewer cells die due to apoptosis. Pten is a tumor-suppressor gene that applies a break on the main cell survival pathway, causing cells to die," said Thomas L. Clemens, PhD, professor of pathology and director of the UAB Division of Molecular and Cellular Pathology. "We devised a way to remove the Pten break in bone cells, allowing the cells to stay alive and active for a longer period of time."

Clemens, a scientist in the UAB Center for Metabolic Bone Disease, and his colleagues at Van Andel Institute in Grand Rapids Michigan disrupted Pten in bone cells called osteoblasts in mice. The mice with Pten disruption, of normal size, had dramatic and progressively increasing bone density throughout life compared to controls.

"In the mice without Pten, osteoblast cells survived longer and continued to make new bone long after they ordinarily would have died," Clemens said. "This increased osteoblast production led to greater bone density. If we can translate these findings to human conditions such as osteoporosis or bone fracture, we potentially can not only prevent bone loss, but actually increase bone density in humans as they age."

Humans lose bone as they age, in part because of the loss of osteoblast cells that have died, leading to conditions such as osteoporosis or its predecessor, osteopenia.

While there are medications available to treat these conditions by slowing bone loss, there are no agents that contribute to building new bone and increasing bone density after it has already been lost.

Clemens stressed that this research is in the very early stages, and it could be years before treatments for human conditions would be possible.

"The key will be to find a way to selectively turn off Pten only in bone-making osteoblasts and leave other cells in the body unaffected," Clemens said. "Pten plays an important role in the body by killing cell lines that are proliferating out of control, as in tumors."

This research was sponsored by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), one of the National Institutes of Health (NIH).

UAB Researchers on the Path to Building Bone Density

UAB researchers have developed a method to increase bone density in mice, a development that might have future benefit for humans in the treatment of osteoporosis and bone fracture.

The research, published in the Jan. 29 issue of *Proceedings of the National Academy of Sciences*, involves manipulation of the *Pten* gene, which contributes to the process by which cells die, known as apoptosis.

"Bone density can increase either because more bone cells divide or fewer cells die due to apoptosis. *Pten* is a tumor-suppressor gene that applies a break on the main cell survival pathway, causing cells to die," said Thomas L. Clemens, PhD, professor of pathology and director of the UAB Division of Molecular and Cellular Pathology. "We devised a way to remove the *Pten* break in bone cells, allowing the cells to stay alive and active for a longer period of time."

Clemens, a scientist in the UAB Center for Metabolic Bone Disease, and his colleagues at Van Andel Institute in Grand Rapids Michigan disrupted *Pten* in bone cells called osteoblasts in mice. The mice with *Pten* disruption, of normal size, had dramatic and progressively increasing bone density throughout life compared to controls.

"In the mice without *Pten*, osteoblast cells survived longer and continued to make new bone long after they ordinarily would have died," Clemens said. "This increased osteoblast production led to greater bone density. If we can translate these findings to human conditions such as osteoporosis or bone fracture, we potentially can not only prevent bone loss, but actually increase bone density in humans as they age."

Humans lose bone as they age, in part because of the loss of osteoblast cells that have died, leading to conditions such as osteoporosis or its predecessor, osteopenia.

While there are medications available to treat these conditions by slowing bone loss, there are no agents that contribute to building new bone and increasing bone density after it has already been lost.

Clemens stressed that this research is in the very early stages, and it could be years before treatments for human conditions would be possible.

"The key will be to find a way to selectively turn off *Pten* only in bone-making osteoblasts and leave other cells in the body unaffected," Clemens said. "*Pten* plays an important role in the body by killing cell lines that are proliferating out of control, as in tumors."

This research was sponsored by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), one of the National Institutes of Health (NIH).
Administrator’s Corner

As of April 1, 2007, all UAB Satellite Clinics will bill using the University of Alabama Health Services Foundation TIN: 630649108 except UAB Family Medicine Clinic. UAB Family Medicine Clinic, located at 930 20th St. S., will bill using the University Hospital TIN: 636005396. Please make sure your systems reflect this information. If you have any questions, please contact me.

A physician file is available electronically with individual NPI information (if assigned). We can also provide professional group and facility NPI information for all UABHS locations if needed. You may request this information by e-mail (hhorton@uabmc.edu) or phone (205.934.5713).

New Web Site

The new UAB Health System web site address is www.uabhealth.org. A new physician listing, along with helpful information on all UAB affiliated sites is available. A new digital health library with treatment information for patients is also available online. See what’s new at UAB.

*Managed Care Contracting does not contract on behalf of all UAB affiliates. Contact department for details.

New Physician Directory Features

www.uabhealth.org/physiciandirectory

Browse & Search Features

You can narrow your search by using these convenient drop down menus:
- Browse by facility location
- Browse by physician specialty

You can search using keywords from the following categories:
- Search by physician’s first and/or last name
- Search by diseases treated
- Search by clinical specialty

Make an Appointment:

Prominent link to HealthFinder to make an appointment with a physician

Future Plans:

Streaming video physician profiles

Example Below

Managed Care Contracting Staff Directory

Director:
J.C. Herring (205) 934-6230 jherring@uabmc.edu

Contract Development Managers:
Gerry Casey 934-9393 gccasey@uabmc.edu
Shirley Naro 975-9457 snaro@uabmc.edu
Teri Roberts 975-5259 tproberts@uabmc.edu

Contract Administrator:
Henrietta Horton 934-5713 hhorton@uabmc.edu
Delaine Rashid 975-9951 drashid@uabmc.edu

Database Analyst III:
Lee Crapet 975-5258 lcrapet@uabmc.edu

Mailing Address:
UABHS MANAGED CARE CONTRACTING
John N. Whitaker Building, Suite 506 - 500 22nd Street South
1530 3RD AVE S
BIRMINGHAM AL 35294-0500
Fax: (205) 975-7888

The UABHS Managed Care Contracting Newsletter is Published quarterly by the UAB Health System.
Direct inquiries to Suite 506, 500 22nd Street South, Birmingham, AL 35233, (205)975-5259
Co-editors: Lee J. Crapet-Managed Care Contracting, Julius Linn, MD – Medical Publications